联合学习(FL)已成为解决数据筒仓问题的实用解决方案,而不会损害用户隐私。它的一种变体垂直联合学习(VFL)最近引起了人们的关注,因为VFL与企业对利用更有价值的功能的需求相匹配,以构建更好的机器学习模型,同时保留用户隐私。当前在VFL中的工作集中于为特定VFL算法开发特定的保护或攻击机制。在这项工作中,我们提出了一个评估框架,该框架提出了隐私 - 私人评估问题。然后,我们将此框架作为指南,以全面评估针对三种广泛依据的VFL算法的大多数最先进的隐私攻击的广泛保护机制。这些评估可以帮助FL从业人员在特定要求下选择适当的保护机制。我们的评估结果表明:模型反转和大多数标签推理攻击可能会因现有保护机制而挫败;很难防止模型完成(MC)攻击,这需要更高级的MC靶向保护机制。根据我们的评估结果,我们为提高VFL系统的隐私保护能力提供具体建议。
translated by 谷歌翻译
联合学习(FL)使独立方能够在保护数据隐私的同时协作建立机器学习(ML)模型。 FL的变体垂直联合学习(VFL)最近引起了人们的注意,因为VFL与企业对利用更有价值的功能的需求相匹配,以实现更好的模型性能而不会损害数据隐私。但是,传统的VFL可能会陷入数据缺陷,因为它只能用标签来利用标签的对准​​样品(属于不同的各方),而通常将大多数未对齐和未标记的样品均未使用。数据缺乏阻碍了联邦的努力。在这项工作中,我们提出了一个联合的混合自我监督的学习框架,即Fedhssl,以利用参与者的所有可用数据(包括未对准和未标记的样本)来培训联合VFL模型。 FEDHSSL的核心思想是利用各方之间对齐的样本的跨党派观点(即分散特征)和各方的本地观点(即增强)来提高通过SSL(SSL)的表示能力(例如,simsiam)。 FEDHSSL进一步利用各方共享的通用特征,以通过部分模型聚合来提高联合模型的性能。我们从经验上证明,与基线方法相比,我们的FEDHSSL实现了显着的性能增长,尤其是当标记样品数量较小时。我们对FedHSSL提供有关隐私泄漏的深入分析,这在现有的自我监督的VFL作品中很少讨论。我们研究了FEDHSSL的保护机制。结果表明,我们的保护可以阻止最先进的标签推理攻击。
translated by 谷歌翻译
联合学习(FL)旨在通过使客户能够在不共享其私有数据的情况下协作构建机器学习模型来保护数据隐私。然而,最近的作品表明FL容易受到基于梯度的数据恢复攻击。保存技术的品种已经利用,以进一步提升FL的隐私。尽管如此,它们的计算或通信昂贵(例如,同态加密)或遭受精密损失(例如,差异隐私)。在这项工作中,我们提出了\ textsc {fedcg},一个新颖的\下划线{fed} erated学习方法,它利用\下划线{c} onditional \下划线{g}良好的对手网络来实现高级隐私保护,同时仍然保持竞争模型表现。更具体地说,\ textsc {fedcg}将每个客户端的本地网络分解为私有提取器和公共分类器,并保留本地提取器保护隐私。而不是暴露作为隐私泄漏的罪魁祸首的提取器,而是将客户的生成器与服务器共享,以聚合旨在增强客户端网络性能的公共知识。广泛的实验表明,与基线FL方法相比,\ TextSc {FEDCG}可以实现竞争模型性能,数值隐私分析表明\ TextSC {FEDCG}具有高级别的隐私保存能力。
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
In this paper, a semantic communication framework for image transmission is developed. In the investigated framework, a set of servers cooperatively transmit images to a set of users utilizing semantic communication techniques. To evaluate the performance of studied semantic communication system, a multimodal metric is proposed to measure the correlation between the extracted semantic information and the original image. To meet the ISS requirement of each user, each server must jointly determine the semantic information to be transmitted and the resource blocks (RBs) used for semantic information transmission. We formulate this problem as an optimization problem aiming to minimize each server's transmission latency while reaching the ISS requirement. To solve this problem, a value decomposition based entropy-maximized multi-agent reinforcement learning (RL) is proposed, which enables servers to coordinate for training and execute RB allocation in a distributed manner to approach to a globally optimal performance with less training iterations. Compared to traditional multi-agent RL, the proposed RL improves the valuable action exploration of servers and the probability of finding a globally optimal RB allocation policy based on local observation. Simulation results show that the proposed algorithm can reduce the transmission delay by up to 16.1% compared to traditional multi-agent RL.
translated by 谷歌翻译
New architecture GPUs like A100 are now equipped with multi-instance GPU (MIG) technology, which allows the GPU to be partitioned into multiple small, isolated instances. This technology provides more flexibility for users to support both deep learning training and inference workloads, but efficiently utilizing it can still be challenging. The vision of this paper is to provide a more comprehensive and practical benchmark study for MIG in order to eliminate the need for tedious manual benchmarking and tuning efforts. To achieve this vision, the paper presents MIGPerf, an open-source tool that streamlines the benchmark study for MIG. Using MIGPerf, the authors conduct a series of experiments, including deep learning training and inference characterization on MIG, GPU sharing characterization, and framework compatibility with MIG. The results of these experiments provide new insights and guidance for users to effectively employ MIG, and lay the foundation for further research on the orchestration of hybrid training and inference workloads on MIGs. The code and results are released on https://github.com/MLSysOps/MIGProfiler. This work is still in progress and more results will be published soon.
translated by 谷歌翻译
With the development of technology and sharing economy, Airbnb as a famous short-term rental platform, has become the first choice for many young people to select. The issue of Airbnb's pricing has always been a problem worth studying. While the previous studies achieve promising results, there are exists deficiencies to solve. Such as, (1) the feature attributes of rental are not rich enough; (2) the research on rental text information is not deep enough; (3) there are few studies on predicting the rental price combined with the point of interest(POI) around the house. To address the above challenges, we proposes a multi-source information embedding(MSIE) model to predict the rental price of Airbnb. Specifically, we first selects the statistical feature to embed the original rental data. Secondly, we generates the word feature vector and emotional score combination of three different text information to form the text feature embedding. Thirdly, we uses the points of interest(POI) around the rental house information generates a variety of spatial network graphs, and learns the embedding of the network to obtain the spatial feature embedding. Finally, this paper combines the three modules into multi source rental representations, and uses the constructed fully connected neural network to predict the price. The analysis of the experimental results shows the effectiveness of our proposed model.
translated by 谷歌翻译
Domain adaptive detection aims to improve the generalization of detectors on target domain. To reduce discrepancy in feature distributions between two domains, recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning. However, they neglect the relationship between multiple granularities and different features in alignment, degrading detection. Addressing this, we introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning. The key is to encode the dependencies across different granularities including pixel-, instance-, and category-levels simultaneously to align two domains. Specifically, based on pixel-level features, we first develop an omni-scale gated fusion (OSGF) module to aggregate discriminative representations of instances with scale-aware convolutions, leading to robust multi-scale detection. Besides, we introduce multi-granularity discriminators to identify where, either source or target domains, different granularities of samples come from. Note that, MGA not only leverages instance discriminability in different categories but also exploits category consistency between two domains for detection. Furthermore, we present an adaptive exponential moving average (AEMA) strategy that explores model assessments for model update to improve pseudo labels and alleviate local misalignment problem, boosting detection robustness. Extensive experiments on multiple domain adaption scenarios validate the superiority of MGA over other approaches on FCOS and Faster R-CNN detectors. Code will be released at https://github.com/tiankongzhang/MGA.
translated by 谷歌翻译
Although deep learning has made remarkable progress in processing various types of data such as images, text and speech, they are known to be susceptible to adversarial perturbations: perturbations specifically designed and added to the input to make the target model produce erroneous output. Most of the existing studies on generating adversarial perturbations attempt to perturb the entire input indiscriminately. In this paper, we propose ExploreADV, a general and flexible adversarial attack system that is capable of modeling regional and imperceptible attacks, allowing users to explore various kinds of adversarial examples as needed. We adapt and combine two existing boundary attack methods, DeepFool and Brendel\&Bethge Attack, and propose a mask-constrained adversarial attack system, which generates minimal adversarial perturbations under the pixel-level constraints, namely ``mask-constraints''. We study different ways of generating such mask-constraints considering the variance and importance of the input features, and show that our adversarial attack system offers users good flexibility to focus on sub-regions of inputs, explore imperceptible perturbations and understand the vulnerability of pixels/regions to adversarial attacks. We demonstrate our system to be effective based on extensive experiments and user study.
translated by 谷歌翻译
Depression is a leading cause of death worldwide, and the diagnosis of depression is nontrivial. Multimodal learning is a popular solution for automatic diagnosis of depression, and the existing works suffer two main drawbacks: 1) the high-order interactions between different modalities can not be well exploited; and 2) interpretability of the models are weak. To remedy these drawbacks, we propose a multimodal multi-order factor fusion (MMFF) method. Our method can well exploit the high-order interactions between different modalities by extracting and assembling modality factors under the guide of a shared latent proxy. We conduct extensive experiments on two recent and popular datasets, E-DAIC-WOZ and CMDC, and the results show that our method achieve significantly better performance compared with other existing approaches. Besides, by analyzing the process of factor assembly, our model can intuitively show the contribution of each factor. This helps us understand the fusion mechanism.
translated by 谷歌翻译